metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[1,3-bis(1H-benzimidazol-2-yl)benzene- κN^3]bis(nitrato- $\kappa^2 O.O'$)cadmium(II) dihydrate

Fa-Yan Meng,^a Yi-Ming Zhang^a and Seik Weng Ng^{b*}

^aSchool of Chemistry and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 10 October 2007; accepted 12 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.035; wR factor = 0.111; data-to-parameter ratio = 17.4.

In the title complex, $[Cd(NO_3)_2(C_{20}H_{14}N_4)_2]\cdot 2H_2O$, the Cd^{II} ion, which lies on a crystallographic twofold axis, is bischelated by two nitrate ligands and is coordinated by one tertiary N atom from each of two 1,3-bis(1H-benzimidazol-2ylmethyl)benzene ligands in a distorted octahedral geometry. In the crystal structure, complex molecules and solvent water molecules are connected via hydrogen bonds to form a threedimensional network.

Related literature

For the structure of the related adduct of 1,3-bis-(benzimidazol-2-ylmethyl)benzene with zinc terephthalate, see Meng, Liu & Ng (2007), and for the zinc succinate adduct, see Meng, Dong & Ng (2007). For the synthesis of 1,3-bis-(benzimidazol-2-ylmethyl)benzene, see Chawla & Gill (1997).

Experimental

Crystal data

[Cd(NO₃)₂(C₂₀H₁₄N₄)₂]·2H₂O $M_r = 893.16$ Orthorhombic, Pbcn a = 14.359(1) Å b = 16.809 (1) Å c = 16.780(1) Å

Data collection

Bruker APEXII area-detector 33964 measured reflections diffractometer 4651 independent reflections Absorption correction: multi-scan 3699 reflections with $I > 2\sigma(I)$ (SADABS; Sheldrick, 1996) $R_{\rm int}=0.026$ $T_{\min} = 0.735, T_{\max} = 0.863$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	267 parameters
$wR(F^2) = 0.111$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
4651 reflections	$\Delta \rho_{\rm min} = -0.59 \text{ e } \text{\AA}^{-3}$

V = 4049.8 (5) Å³

Mo $K\alpha$ radiation

 $0.49 \times 0.36 \times 0.25 \text{ mm}$

 $\mu = 0.60 \text{ mm}^{-1}$

T = 293 (2) K

Z = 4

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2-H2 n ···O4	0.86	1.88	2.720 (3)	167
$N3-H3n \cdot \cdot \cdot O1^{i}$	0.86	2.04	2.895 (3)	175
$O4-H1w\cdots O2^{ii}$	0.83	2.13	2.931 (3)	163
$O4 - H2w \cdots N4^{iii}$	0.83	2.02	2.837 (3)	169
Commentary and any (i)			- 1. (:::)	1 = 1 1

Symmetry codes: (i) $-x, y, -z + \frac{1}{2}$; (ii) $x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x, -y + 1, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

We thank the Huangshi Institute of Technology (grant No. 07yjz07A) and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2532).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2005). APEX2 (Version 1.22A) and SAINT (Version 7.12A). Bruker AXS Inc., Madison, Winconsin, USA.
- Chawla, S. K. & Gill, B. K. (1997). Polyhedron, 16, 1315-1322.
- Meng, F.-Y., Dong, W.-H. & Ng, S. W. (2007). Acta Cryst. E63, m2398-m2399.
- Meng, F.-Y., Liu, X.-Q. & Ng, S. W. (2007). Acta Cryst. C63, m341-m342.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Westrip, S. P. (2007). publCIF. In preparation.

Acta Cryst. (2007). E63, m2752 [doi:10.1107/S1600536807050210]

Bis[1,3-bis(1*H*-benzimidazol-2-yl)benzene- κN^3]bis(nitrato- $\kappa^2 O, O'$)cadmium(II) dihydrate

F.-Y. Meng, Y.-M. Zhang and S. W. Ng

Comment

We have reported the zinc terephthalate and zinc succinate adducts of 1,3-bis(benzimidazol-2-ylmethyl)benzene, an *N*-heterocycle that is capable of binding through two nitrogen sites (Meng, Dong & Ng, 2007; Meng, Liu & Ng, 2007). In the title cadmium nitrate adduct, the two ligands bind in a unidentate manner as the two nitrate groups are chelated to the metal (see Fig. 1). The Lewis-basic amino sites of the molecule engage in hydrogen bonding interactions with the lattice water molecule to furnish a three-dimensional network structure.

Experimental

1,3-Bis(benzimidazol-2-ylmethyl)benzene was prepared according to a reported procedure (Chawla & Gill, 1997). Cadmium nitrate tetrahydrate (0.08 g, 0.25 mmol), 1,3-bis(benzimidazol-2-ylmethyl)benzene (0.15 g, 0.5 mmol), ethanol (2 ml) and water (15 ml) were placed in a 23-ml, Teflon-lined, stainless -steel Parr bomb. The bomb was heated at 433 K for 5 days and cooled to room temperature at 5 K h⁻¹. Colorless crystals were obtained in 10% yield. A somewhat large block was used in the diffraction measurements.

Refinement

All H-atoms were generated geometrically, and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C,N,O)$ [O–H 0.83, N–H 0.86 and C–H 0.93 Å].

Figures

Fig. 1. Figure 1. The molecular structure with displacement ellipsoids are drawn at the 50% probability level, and H atoms as spheres of arbitrary radius. [Symmery code (i): -x, y, 1/2 - z]

Bis[1,3-bis(1*H*-benzimidazol-2-yl)benzene- κN^3]bis(nitrato- $\kappa^2 O, O'$)cadmium(II) dihydrate

 Crystal data

 $[Cd(NO_3)_2(C_{20}H_{14}N_4)_2] \cdot 2H_2O$
 $M_r = 893.16$
 $D_x = 1.465 \text{ Mg m}^{-3}$

 Orthorhombic, Pbcn

 Hall symbol: -P 2n 2ab

 Cell parameters from 5514 reflections

n
1

Data collection

Bruker APEXII area-detector diffractometer	4651 independent reflections
Radiation source: fine-focus sealed tube	3699 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
T = 291(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -18 \rightarrow 18$
$T_{\min} = 0.735, T_{\max} = 0.863$	$k = -21 \rightarrow 21$
33964 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.111$	$w = 1/[\sigma^2(F_o^2) + (0.0609P)^2 + 3.0327P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
4651 reflections	$\Delta \rho_{max} = 0.40 \text{ e} \text{ Å}^{-3}$
267 parameters	$\Delta \rho_{min} = -0.59 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.0000	0.812267 (14)	0.2500	0.04011 (10)
01	-0.06502 (14)	0.86543 (10)	0.36422 (11)	0.0525 (5)
O2	-0.11506 (18)	0.91958 (13)	0.25262 (11)	0.0589 (5)
O3	-0.1546 (3)	0.9858 (2)	0.3759 (2)	0.1299 (13)
O4	0.23158 (19)	0.46184 (12)	0.35459 (15)	0.0817 (8)
H1W	0.2820	0.4507	0.3332	0.098*
H2W	0.2029	0.4217	0.3686	0.098*
N1	0.10316 (14)	0.72662 (11)	0.30585 (11)	0.0385 (4)
N2	0.15475 (15)	0.60964 (12)	0.34838 (12)	0.0442 (5)
H2n	0.1704	0.5602	0.3479	0.053*
N3	0.09189 (15)	0.76740 (12)	-0.00421 (12)	0.0447 (5)
H3n	0.0810	0.7946	0.0382	0.054*

N4	0.12082 (18)	0.66241 (14)	-0.08129 (13)	0.0516 (5)
N5	-0.11018 (19)	0.91902 (15)	0.32757 (18)	0.0629 (7)
C1	0.12630 (16)	0.73325 (14)	0.38599 (14)	0.0394 (5)
C2	0.1238 (2)	0.79860 (17)	0.43769 (16)	0.0495 (6)
H2	0.1043	0.8485	0.4204	0.059*
C3	0.1513 (2)	0.78597 (19)	0.51496 (17)	0.0579 (7)
Н3	0.1502	0.8284	0.5505	0.069*
C4	0.1808 (2)	0.7120 (2)	0.54192 (17)	0.0637 (8)
H4	0.1980	0.7060	0.5950	0.076*
C5	0.1852 (2)	0.64744 (19)	0.49195 (16)	0.0571 (7)
Н5	0.2053	0.5980	0.5098	0.069*
C6	0.15785 (17)	0.65970 (15)	0.41296 (15)	0.0422 (5)
C7	0.12274 (16)	0.65194 (14)	0.28564 (14)	0.0381 (5)
C8	0.11145 (17)	0.61731 (14)	0.20567 (14)	0.0397 (5)
C9	0.09638 (18)	0.53648 (15)	0.19548 (16)	0.0465 (6)
Н9	0.0941	0.5031	0.2396	0.056*
C10	0.0848 (2)	0.50543 (16)	0.11971 (17)	0.0520 (6)
H10	0.0746	0.4512	0.1133	0.062*
C11	0.08827 (19)	0.55436 (16)	0.05356 (16)	0.0494 (6)
H11	0.0806	0.5329	0.0029	0.059*
C12	0.10332 (17)	0.63595 (15)	0.06270 (15)	0.0418 (5)
C13	0.11557 (18)	0.66654 (15)	0.13896 (14)	0.0404 (5)
H13	0.1267	0.7207	0.1455	0.048*
C14	0.10567 (18)	0.68767 (14)	-0.00786 (15)	0.0428 (5)
C15	0.1167 (2)	0.73083 (17)	-0.12796 (16)	0.0507 (6)
C16	0.1305 (3)	0.7409 (2)	-0.21018 (18)	0.0707 (9)
H16	0.1434	0.6978	-0.2432	0.085*
C17	0.1241 (4)	0.8167 (2)	-0.23986 (19)	0.0782 (12)
H17	0.1330	0.8249	-0.2941	0.094*
C18	0.1049 (2)	0.8813 (2)	-0.1919 (2)	0.0689 (9)
H18	0.1010	0.9316	-0.2148	0.083*
C19	0.0915 (2)	0.87329 (18)	-0.11142 (18)	0.0587 (7)
H19	0.0784	0.9169	-0.0792	0.070*
C20	0.09844 (19)	0.79700 (16)	-0.08038 (15)	0.0461 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.05074 (17)	0.03035 (15)	0.03923 (16)	0.000	-0.00704 (10)	0.000
01	0.0681 (12)	0.0402 (9)	0.0492 (10)	0.0111 (9)	-0.0009 (9)	0.0097 (8)
O2	0.0788 (15)	0.0489 (11)	0.0491 (11)	0.0134 (10)	-0.0123 (9)	0.0037 (8)
O3	0.155 (3)	0.110 (2)	0.126 (3)	0.045 (2)	0.046 (2)	0.003 (2)
O4	0.0975 (18)	0.0449 (11)	0.1028 (19)	0.0213 (11)	0.0434 (15)	0.0257 (12)
N1	0.0452 (11)	0.0350 (10)	0.0354 (10)	0.0008 (8)	-0.0050 (8)	0.0005 (8)
N2	0.0534 (12)	0.0371 (10)	0.0421 (11)	0.0076 (9)	0.0022 (9)	0.0071 (9)
N3	0.0537 (12)	0.0446 (11)	0.0359 (10)	0.0004 (10)	0.0009 (9)	-0.0019 (9)
N4	0.0656 (15)	0.0520 (13)	0.0373 (11)	0.0026 (11)	0.0037 (10)	-0.0036 (10)
N5	0.0662 (16)	0.0482 (13)	0.0744 (18)	-0.0002 (12)	0.0051 (13)	0.0069 (12)

C1	0.0377 (12)	0.0433 (13)	0.0373 (12)	-0.0023 (10)	-0.0029 (9)	0.0026 (10)
C2	0.0521 (15)	0.0494 (14)	0.0471 (14)	-0.0016 (12)	-0.0066 (12)	-0.0045 (11)
C3	0.0591 (17)	0.0701 (19)	0.0445 (15)	-0.0026 (15)	-0.0054 (13)	-0.0129 (14)
C4	0.0650 (19)	0.091 (2)	0.0356 (14)	-0.0044 (17)	-0.0078 (13)	0.0055 (15)
C5	0.0619 (17)	0.0670 (18)	0.0424 (14)	0.0025 (14)	-0.0019 (12)	0.0190 (13)
C6	0.0414 (13)	0.0466 (13)	0.0388 (12)	0.0005 (11)	0.0011 (10)	0.0068 (10)
C7	0.0394 (12)	0.0364 (12)	0.0385 (12)	0.0013 (9)	0.0023 (9)	0.0042 (10)
C8	0.0409 (12)	0.0367 (12)	0.0416 (13)	0.0033 (9)	0.0022 (10)	-0.0018 (10)
C9	0.0526 (14)	0.0371 (12)	0.0497 (14)	0.0020 (11)	0.0061 (12)	0.0029 (11)
C10	0.0632 (17)	0.0368 (13)	0.0560 (16)	-0.0061 (12)	0.0062 (13)	-0.0087 (11)
C11	0.0578 (15)	0.0448 (14)	0.0454 (14)	-0.0062 (12)	0.0049 (12)	-0.0093 (11)
C12	0.0424 (13)	0.0413 (13)	0.0417 (13)	0.0000 (10)	0.0048 (10)	-0.0042 (10)
C13	0.0459 (13)	0.0357 (11)	0.0396 (12)	0.0009 (10)	0.0026 (10)	-0.0014 (9)
C14	0.0440 (13)	0.0453 (13)	0.0392 (13)	-0.0012 (10)	0.0010 (10)	-0.0044 (10)
C15	0.0561 (16)	0.0561 (16)	0.0400 (13)	0.0003 (12)	0.0014 (11)	0.0005 (11)
C16	0.096 (3)	0.075 (2)	0.0408 (16)	0.0062 (19)	0.0077 (16)	-0.0025 (15)
C17	0.105 (3)	0.087 (3)	0.0428 (18)	0.002 (2)	0.0052 (17)	0.0148 (16)
C18	0.082 (2)	0.066 (2)	0.0584 (18)	-0.0030 (17)	-0.0055 (16)	0.0194 (16)
C19	0.0693 (19)	0.0529 (16)	0.0537 (16)	-0.0031 (14)	-0.0047 (14)	0.0043 (13)
C20	0.0451 (14)	0.0531 (15)	0.0399 (13)	-0.0019 (11)	-0.0019 (11)	0.0011 (11)

Geometric parameters (Å, °)

Cd1—N1 ⁱ	2.2682 (19)	C4—C5	1.373 (5)
Cd1—N1	2.2682 (19)	C4—H4	0.9300
Cd1—O1	2.3116 (19)	C5—C6	1.397 (4)
Cd1—O1 ⁱ	2.3116 (19)	С5—Н5	0.9300
Cd1—O2 ⁱ	2.446 (2)	С7—С8	1.472 (3)
Cd1—O2	2.446 (2)	C8—C9	1.386 (3)
O1—N5	1.269 (3)	C8—C13	1.393 (3)
O2—N5	1.260 (3)	C9—C10	1.384 (4)
O3—N5	1.525 (4)	С9—Н9	0.9300
O4—H1W	0.8298	C10-C11	1.382 (4)
O4—H2W	0.8250	C10—H10	0.9300
N1—C7	1.330 (3)	C11—C12	1.397 (3)
N1—C1	1.390 (3)	C11—H11	0.9300
N2—C7	1.351 (3)	C12—C13	1.390 (3)
N2—C6	1.373 (3)	C12—C14	1.469 (3)
N2—H2n	0.8600	С13—Н13	0.9300
N3—C14	1.356 (3)	C15—C20	1.394 (4)
N3—C20	1.375 (3)	C15—C16	1.404 (4)
N3—H3n	0.8600	C16—C17	1.372 (5)
N4—C14	1.321 (3)	С16—Н16	0.9300
N4—C15	1.393 (4)	C17—C18	1.379 (5)
C1—C6	1.392 (3)	С17—Н17	0.9300
C1—C2	1.400 (4)	C18—C19	1.371 (4)
C2—C3	1.372 (4)	C18—H18	0.9300
C2—H2	0.9300	C19—C20	1.388 (4)

C3—C4 C3—H3	1.390 (4) 0.9300	С19—Н19	0.9300
N1 ⁱ —Cd1—N1	101.21 (10)	N2—C6—C1	106.1 (2)
$N1^{i}$ —Cd1—O1	108.92 (7)	N2—C6—C5	131.9 (3)
N1—Cd1—O1	99.58 (7)	C1—C6—C5	122.0 (3)
$N1^{i}$ —Cd1—O1 ⁱ	99.58 (7)	N1—C7—N2	111.7 (2)
$N1-Cd1-O1^{i}$	108.92 (7)	N1—C7—C8	125.6 (2)
$O1$ — $Cd1$ — $O1^i$	134.52 (9)	N2—C7—C8	122.7 (2)
N1 ⁱ —Cd1—O2 ⁱ	154.36 (7)	C9—C8—C13	119.3 (2)
N1—Cd1— $O2^{i}$	91.97 (8)	C9—C8—C7	121.2 (2)
$O1$ — $Cd1$ — $O2^{i}$	90.15 (7)	C13—C8—C7	119.5 (2)
$O1^{i}$ —Cd1— $O2^{i}$	55.07 (6)	C8—C9—C10	120.1 (2)
N1 ⁱ —Cd1—O2	91.97 (8)	С8—С9—Н9	120.0
N1-Cd1-O2	154.36 (7)	С10—С9—Н9	120.0
O1—Cd1—O2	55.07 (6)	C11—C10—C9	120.6 (2)
O1 ⁱ —Cd1—O2	90.15 (7)	C11—C10—H10	119.7
O2 ⁱ —Cd1—O2	85.00 (12)	С9—С10—Н10	119.7
N5—O1—Cd1	94.53 (17)	C10-C11-C12	120.1 (2)
N5—O2—Cd1	88.56 (16)	C10-C11-H11	119.9
H1W—O4—H2W	111.9	C12—C11—H11	119.9
C7—N1—C1	105.78 (19)	C13—C12—C11	118.9 (2)
C7—N1—Cd1	129.17 (15)	C13—C12—C14	121.3 (2)
C1—N1—Cd1	120.34 (15)	C11—C12—C14	119.7 (2)
C7—N2—C6	107.7 (2)	C12—C13—C8	121.0 (2)
C7—N2—H2n	126.2	С12—С13—Н13	119.5
C6—N2—H2n	126.2	C8—C13—H13	119.5
C14—N3—C20	107.8 (2)	N4—C14—N3	112.6 (2)
C14—N3—H3n	126.1	N4—C14—C12	124.4 (2)
C20—N3—H3n	126.1	N3—C14—C12	123.0 (2)
C14—N4—C15	104.6 (2)	N4—C15—C20	110.2 (2)
O2—N5—O1	121.2 (3)	N4—C15—C16	130.2 (3)
O2—N5—O3	120.1 (3)	C20-C15-C16	119.6 (3)
O1—N5—O3	118.6 (3)	C17—C16—C15	117.3 (3)
N1—C1—C6	108.7 (2)	С17—С16—Н16	121.3
N1—C1—C2	131.0 (2)	С15—С16—Н16	121.3
C6—C1—C2	120.2 (2)	C16—C17—C18	122.2 (3)
C3—C2—C1	117.2 (3)	С16—С17—Н17	118.9
С3—С2—Н2	121.4	С18—С17—Н17	118.9
C1—C2—H2	121.4	C19—C18—C17	121.7 (3)
C2—C3—C4	122.3 (3)	С19—С18—Н18	119.2
С2—С3—Н3	118.9	С17—С18—Н18	119.2
С4—С3—Н3	118.9	C18—C19—C20	116.8 (3)
C3—C4—C5	121.5 (3)	C18—C19—H19	121.6
C3—C4—H4	119.3	С20—С19—Н19	121.6
С5—С4—Н4	119.3	N3—C20—C19	132.7 (3)
C4—C5—C6	116.8 (3)	N3—C20—C15	104.9 (2)

С4—С5—Н5	121.6	C19—C20—C15	122.4 (3)
С6—С5—Н5	121.6		
N1 ⁱ —Cd1—O1—N5	-83.37 (16)	Cd1—N1—C7—N2	-153.49 (17)
N1-Cd1-01-N5	171.20 (16)	C1—N1—C7—C8	-178.7 (2)
O1 ⁱ —Cd1—O1—N5	42.36 (14)	Cd1—N1—C7—C8	26.2 (3)
O2 ⁱ —Cd1—O1—N5	79.17 (16)	C6—N2—C7—N1	-1.1 (3)
O2-Cd1-O1-N5	-4.61 (16)	C6—N2—C7—C8	179.2 (2)
N1 ⁱ —Cd1—O2—N5	116.45 (17)	N1—C7—C8—C9	-153.4 (2)
N1—Cd1—O2—N5	-4.9 (3)	N2—C7—C8—C9	26.3 (4)
O1-Cd1-O2-N5	4.63 (16)	N1-C7-C8-C13	26.4 (4)
O1 ⁱ —Cd1—O2—N5	-143.95 (18)	N2—C7—C8—C13	-154.0 (2)
O2 ⁱ —Cd1—O2—N5	-89.06 (17)	C13—C8—C9—C10	-0.6 (4)
N1 ⁱ —Cd1—N1—C7	25.06 (18)	C7—C8—C9—C10	179.2 (2)
O1—Cd1—N1—C7	136.7 (2)	C8—C9—C10—C11	0.1 (4)
O1 ⁱ —Cd1—N1—C7	-79.3 (2)	C9—C10—C11—C12	-0.2 (4)
$\Omega^{2^{i}}$ Cd1 N1 C7	-132.8 (2)	C10-C11-C12-C13	0.6 (4)
O2—Cd1—N1—C7	144.7 (2)	C10-C11-C12-C14	-179.2 (3)
$N1^{i}$ —Cd1—N1—C1	-126.94 (19)	C11—C12—C13—C8	-1.1 (4)
01—Cd1—N1—C1	-15.31 (18)	C14—C12—C13—C8	178.7 (2)
O1 ⁱ —Cd1—N1—C1	128.74 (17)	C9—C8—C13—C12	1.0 (4)
$O2^{i}$ —Cd1—N1—C1	75.18 (18)	C7—C8—C13—C12	-178.7 (2)
O2—Cd1—N1—C1	-7.3 (3)	C15—N4—C14—N3	0.2 (3)
Cd1—O2—N5—O1	-8.1 (3)	C15—N4—C14—C12	179.9 (3)
Cd1—O2—N5—O3	168.7 (3)	C20—N3—C14—N4	-0.1 (3)
Cd1—O1—N5—O2	8.6 (3)	C20—N3—C14—C12	-179.8 (2)
Cd1—O1—N5—O3	-168.2 (2)	C13—C12—C14—N4	160.1 (3)
C7—N1—C1—C6	-1.5 (3)	C11—C12—C14—N4	-20.1 (4)
Cd1—N1—C1—C6	156.26 (16)	C13-C12-C14-N3	-20.2 (4)
C7—N1—C1—C2	177.2 (3)	C11-C12-C14-N3	159.6 (3)
Cd1—N1—C1—C2	-25.0 (4)	C14—N4—C15—C20	-0.2 (3)
N1—C1—C2—C3	179.8 (3)	C14—N4—C15—C16	177.7 (3)
C6—C1—C2—C3	-1.5 (4)	N4-C15-C16-C17	-178.4 (4)
C1—C2—C3—C4	0.1 (5)	C20-C15-C16-C17	-0.7 (5)
C2—C3—C4—C5	0.9 (5)	C15-C16-C17-C18	0.0 (7)
C3—C4—C5—C6	-0.5 (5)	C16—C17—C18—C19	0.3 (7)
C7—N2—C6—C1	0.1 (3)	C17—C18—C19—C20	0.2 (5)
C7—N2—C6—C5	-179.9 (3)	C14—N3—C20—C19	-179.2 (3)
N1—C1—C6—N2	0.9 (3)	C14—N3—C20—C15	-0.1 (3)
C2-C1-C6-N2	-178.0 (2)	C18—C19—C20—N3	178.0 (3)
N1-C1-C6-C5	-179.1 (2)	C18—C19—C20—C15	-1.0 (5)
C2—C1—C6—C5	2.0 (4)	N4-C15-C20-N3	0.2 (3)
C4—C5—C6—N2	179.1 (3)	C16-C15-C20-N3	-178.0 (3)
C4—C5—C6—C1	-1.0 (4)	N4-C15-C20-C19	179.4 (3)
C1—N1—C7—N2	1.6 (3)	C16-C15-C20-C19	1.2 (5)
Symmetry codes: (i) $-x$, y , $-z+1/2$.			

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2n···O4	0.86	1.88	2.720 (3)	167
N3—H3n···O1 ⁱ	0.86	2.04	2.895 (3)	175
O4—H1W···O2 ⁱⁱ	0.83	2.13	2.931 (3)	163
O4—H2W…N4 ⁱⁱⁱ	0.83	2.02	2.837 (3)	169
Symmetry codes: (i) - <i>x</i> , <i>y</i> , - <i>z</i> +1/2; (ii) <i>x</i> +1/2, <i>y</i> -	1/2, -z+1/2; (iii) $x,$	-y+1, z+1/2.		

Fig. 1